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ABSTRACT

The design of a wide frequency band neutralizer, vibration absorber and/or
structural fuzzy, in the form of multiple sprung masses, is extensively reported in the open
literature. The action of the device is reported in terms of the joint point impedance of the
sprung masses. This joint impedance is merely the sum over the impedances of the
individual sprung masses at the common point to which the device is to be attached to a
master structure. The normalized frequency bandwidth of a device composed of a single
sprung mass is proportional to the loss factor of that sprung mass. To increase this
bandwidth, a device composed of more than one sprung mass is utilized. The multiplicity
of sprung masses with distributed resonance frequencies is the scheme by which a wide
frequency band is attained. To keep the undulations in the joint impedance of a set
composed of a multiplicity of sprung masses suppressed, the loss factors are rendered
larger than the normalized separations between adjacent anti-resonance frequencies. This
modal overlap condition, together with the conservation of weight, are central to the design
of the device. Two distinct resonance frequency distributions are assigned to
corresponding devices and the ranges and parameters that specify the devices are limited to
reasonably moderate values; e.g., the useful frequency bandwidth of a device is limited to
one-third of its center frequency and the number (N — 1) of sprung masses in a device is
restricted not to exceed one-score. (For a set composed of a single sprung mass N = 2
and for a set composed of a multiplicity of sprung masses N 2 3.) In a set employing the
first distribution, as (N) is initially increased, an increase in the bandwidth is accompanied
by an increase in the joint impedance. As (N) is further increased, the bandwidth and the
level of the joint impedance become saturated. In a set incorporating the second
distribution, an on-going increase in the bandwidth, as (V) increases, is accompanied by

an on-going decrease in the level of the joint impedance. The examination of these and



other characteristics in the joint impedance of the sprung masses is provided by data
obtained in computer experiments performed on a few selected sets of sprung masses.
When the frequency bandwidth of the device is increased, the amplification or the
diminution in the level of the joint impedance, within its viable frequency band, cause the
noise control effectiveness of the device to rise or fall, respectively. To assess this
potential noise control effectiveness, a noise control criterion is proposed in terms of the
overall gain and the normalized overall gain. The latter compares the overall gain of a set of
multiple sprung masses with that of a corresponding single sprung mass. These gains
assess the noise control that can be mustered by a set of sprung masses in situ. The
computer experiments are extended so that several examples of the proposed overall gains,

unnormalized and normalized, can be cited.



L. INTRODUCTION

Ever since structural fuzzies began reverberating within the noise control
community, sprung masses, as vibration control devices, have become hot commodities [1-
5]. The impedance Z j () that the (j)th sprung mass presents to a structure at the “point”

(x) of attachment is simple enough

Zj(@) = ioM; [{1+7] - (@/0)"} - iw/0)® n;] e

[{1- @/0)*P + 037"
(@;)° = (Ko I Mj) ; K; = K, (1+inj), (1
where M j» @ and N j are the mass, the resonance frequency, and the loss factor of that
sprung mass. The loss factor is associated with the stiffness K j of the spring. Consider

initially a device of a single sprung mass [3-6]. The resonance frequency of that sprung

mass is designated (@, ), yielding, thereby, a frequency of resonance, given by
@/@)® = 1+n%), @

where (7)) is the loss factor associated with that single-sprung mass-device. At and in the
vicinity of the frequency of resonance, the impedance Z(w) of the sprung mass is

resistance controlled and of the approximate form

Z(@) ~ (oM7) ; I-(w/w;)*1 S nj<<1, 3)




where M is the mass of this single-sprung mass-device. The notion that a resistance
controlled impedance that is inversely proportional to a loss factor can be presented to a
vibrating structure conjures vision of the ultimate noise control device [3,5,6]. One is
aware, of course, that in order to increase that resistance controlled impedance, without the
penalty of added weight, the loss factor (77) must be kept small, notwithstanding that
impedance matching also plays a decisive role in transferring power from one elemental
dynamic system to another [7]. But a small (7}) implies a nanow-ffequency-band device.
To overcome this dilemma it is proposed to increase the number of sprung masses at a
point and to assign to these sprung masses a distribution of resonance frequencies to cover
the desired wider frequency bandwidth. To accommodate this proposal several mundane
structural models can be devised to enable a multiplicity of sprung masses to be
concentrated essentially at a point [1-5]. Sprung masses that perceive a common response
at their respective points of attachment can be considered to act at a point. A typical set of
sprung masses at a point is sketched in Fig. 1. The expression for the joint impedance that
this set of sprung masses presents at a point is readily derived; i.e., it is merely the sum of

the individual impedances of the sprung masses given by

IN
~

IN
4

N
Zy@) = 3, Zj() ; 2 @)
j=2

and, hence (N — 1) is the number of sprung masses in the set [2-5,8]. The overall
normalized frequency bandwidth (A®@ / @) is related to the highest resonance frequency
(@, ) and the lowest resonance frequency (@ ) in the set of the sprung masses.

Formally,

(Aw/w) = T)52N+(Aa)/wl)N23 (1—52N) N N22 ’ (5)



where (@) is a normalizing frequency, (1) is the loss factor and (@,7) is the frequency
bandwidth of a set composed of a single sprung mass, &,  is the Kronecker delta in (2)
and (N) and (A®@/ @, ) y>3 is the frequency bandwidth of a set composed of two or more
sprung masses. It is noted that the normalized frequency bandwidth of a set composed of

two or more sprung masses is

N-1
(A0 o) y2; = (@, —0y)/ 0]= Y, [(0; -0;4)/ 0] ; N23
j=2

(6

It took a few years, however, to appropriately relate the normalized on the average
separation (80 / @) between adjacent resonance frequencies and the on the average loss
factor (7].) and the normalized local separation (6@ il j) between adjacent anti-
resonance and the local loss factor (n j ), respectively [5,9,10]. These relationships define
the condition of modal overlap [11]. The on the average condition of modal overlap is

expressed in the form
Ne 2(00/w); (bo/w)y=(N-2)" (0, -oy)/ o] ; N23 , (7a)

where use is made of Eq. (6). On the other hand, the local condition of modal overlap is

expressed in the form

and it is noted that the local separation (6@ j /o j) between adjacent anti-resonance

frequencies in a set of more than a single sprung mass is




(Bo; /o)) = [(©] —07)/ 0J1-8;)1-6;y)+2[(w, -0;)/ ©,16),

+2[(0] -oy)/ oyl 3 2SjSN ; N23 ®

where (w;-*) and ((o;-') are, respectively, the anti-resonance frequencies on the higher and
lower frequency sides of the resonance frequency (@ j ). When the condition of modal
overlap is not met, undulations, as a function of frequency, exist. These undulations exist;
either on the average or locally, in the joint impedance Z (@) of a noise control device
composed of a set of sprung masses with N = 3. The undulations are decreased as the
condition of modal overlap is approached; the decreased undulations substantially converge
onto steady values as the condition of modal overlap is just reached [12]. [cf.
Appendix A.] When the condition of modal overlap is met, the undulations are negligible.
It has been speculated that the mean-values of the undulations assume values that
are independent of the loss factors of the individual sprung masses [3, 4, 12]. Therefore,
these values are commensurate with the values on which the undulations converge as the
overlap condition is just met and beyond, notwithstanding that the overlap condition is a
function of the distribution of the resonance frequencies. [cf. Eq. (7).] This speculation is
tested herein and the limits on its validity are formulated and revealed. [cf. Appendix A.]
Practitioners of noise control do not advocate large fluctuations in the response and,
therefore, the condition of modal overlap is usually approached or reached in the design of
a set of sprung masses, notwithstanding that an increase in damping, beyond that which
just satisfies the modal overlap condition, is held to be detrimental to this design [5]. This
notion also is to be tested, and, if possible, quantified, herein. It is within this context that
the influence of the damping on the design of a set of sprung masses is investigated. The
investigation undertaken is facilitated by relating (17) and (6 / @) to the designed on the
average loss factor (1), and (1) and (6@ j /o j) to the designed local loss factor

(M; ), respectively, in'the form



Ny (b0 / w) , - (9a)
"Nj} - O+ {(5“’1/ a’j)} (=l 9b)

where (6@ / @) and (6w j /® j) are stated in Eqgs. (7a) and (8), respectively, and the

overlap factor (b) is defined

(1/3), modal overlap condition is not satisfied ,

(2/3), modal overlap condition is approached , (10)
- (3/2), modal overlap condition is just satisfied ,

(2), modal overlap condition is comfortably satisfied.

The introduction of an auxiliary structure to a master structure often raises the
question of weight. An equation of conservation of weight is, therefore, imposed on the

~ design of a set of sprung masses, it is

N
YM; = (aM)) , (11a)
j=2

where M| is the effective mass of the structure to which the set of sprung masses is to be
attached and (@) is the ratio of the total mass M in the set of sprung masses to this
effective mass. An acceptable value for (a) is one tenth (107"). Were the individual

masses in the sprung masses assumed to be equal, Eq. (11a) yields

M; = M = (aM)[(N-1D]" , (11b)

where M is the mass in each of the sprung masses. [cf. Eq. (3).]



The distribution of the resonance frequencies of the sprung masses in a set may be

defined

@jlo) =0+ 2 -D-Nyy "% ; ypy(N-1)<1;2<j<SN, (12

with (¥ y) to be related to either the single numerical increment () or (¥, ) in the forms

(y/2)XN-1D)7" (13a)
YN =
Yo , (13b)

respectively, and where the center frequency (@, ) spans equal numbers of resonance

frequencies on the lower and higher frequency ranges. The center frequency (@, ) is the

resonance frequency of a device composed of a single sprung mass, e.g., in Eq. (2), and
is also used as a normalizing frequency; e.g., in Eq. (5). It follows, from Egs. (12),

(13a) and (13b), that the difference between the two distributions of resonance frequencies

is sustained by the duality of (¥ ). However, if N = N, and (y) and (¥, ) are related”

in the form
(YI2XN, =D =y, (13¢)

then, for this value of () the value of (yy) is degenerate in the two distributions.

Therefore, for N = N, the corresponding parameters and quantities in the two

distributions are identical. Substituting Eq. (12) in Eqgs. (6), (7a), and (8) one obtains
(@, —oy)/ o] = [{I-(N=-27y}"2 -1+ (N=2)y,}?] . (140

(bw/w) = [{l-(N=-2yy}) 2 =1+ (N=-2yy}"2AN=-2)" |, (14b)



(&Oj /a)j) =[{1 -'}’N[l +{2(j-1)- N}YN]—I}-I/Z
_{1+}’N[l+{2(j—1)_.N}7N]—1}—|/2 ’ (140)

respectively, where (Y ) assumes the one or the other form specified in Eq. (13).

A practical limit needs to be imposed on the frequency bandwidth stated in

Eq. (14a). This limit is then imposed in the form

(0w, ~wy)/ @] S1/3 ; N23 . : (15)

From Egs. (12), (13), (14a) and (15) one finds that

[(y/2)(N-2)N -1
(w; —oy) o] = [yNy(N=-2)]= 5(1/3),N23
Yo(N=2) , (16b)

, (162)

where the approximations in Eq. (16) are predicated on the assignment of reasonable

parametric limits: (Y<0.6), (¥,50.03) and (N<20). Similarly, from Egs. (13), (14b)

and (15) one finds that

[(y/2)XN-1)"" v ., (17a)
bo/w)= Yy =

Yo . (Tb)

and from Egs. (13), (14c) and (15) one finds that



bo;/0;) = ;) yy

_ { -2 -D- Ny /2N -1 (r/2N -1 ’ (182)

H-R2G-D- N1 7, . (18b)
where (a)j / @,), and, therefore also (a)j / , )2 , are stated in Eq. (12). For a specific
numerical increment (¥), Eq. (16a) states that the normalized frequency bandwidth is
approximately proportional to (N —2) (N - 1)". Compatibly, Eq. (17a) states that the
on the average normalized separation (6 / @) between adjacent resonance frequencies is
approximately proportional to (N — 1), whereas Eq. (18a) states that the local
normalized separation (6@ j /o j) between adjacent anti-resonance frequencies introduces,
in addition, a factor of proportionality equal to (@ j /0, )2 ; this factor depends weakly not
only on (N), but also on (). On the other hand, for a specific numerical increment (),
Eq. (16b) states that the normalized frequency bandwidth is approximately proportional to
(N —2). Compatibly, Eq. (17b) states that the on the average separation (6@ / @) is
'approximately independent of (N); indeed, this normalized quantity is merely
approximated by (Y, ). It is conducive then to equate (1) to (70 ), where (7)) is the loss
factor of the sprung mass in a set composed of a single member. Here again, Eq. (18b)
states that the local normalized separations (6@ j /o ;) differs from the corresponding on
the average separation (6 / @) by a factor of proportionality equal to (@ il o, ). As
just mentioned, in the moderate parametric ranges, this factor harbors a weak, but definite,
dependence on both, (N) and ().

Of course, the masses, the loss factors and the distribution of the resonance

frequencies in a set of sprung masses may be defined variously from those stated in
Egs. (9) - (13) and thus yielding results that may be in some variance with those stated in

Eqgs. (16) - (18). Here, however, the definitions in Egs. (9) - (13) prove convenient and

10



varied enough. These definitions are, therefore, adopted as typical examples [10]. Using
these adopted definitions, computer experiments are conducted to examine the nature of the
joint impedance Zy (@) for a few sets of sprung masses. Of particular interest in this
examination are the influences, on the characteristics of this joint impedance, by the
variations and the restrictions just presented.

A major question remains: Given that the joint impedance Z, (@) of a set of
sprung masses may be designed with specific characteristics, how is the potential noise
control effectiveness of this set to be assessed? To answer this question one needs develop
a noise control criterion that is based on the performance of a specific set of sprung masses.
The performance is to be judged within the context of the response of the structure to which
this set is attached; i.e., the master structure. Such a criterion may be expressed in terms of

an overall gain I} \ (@) defined in the form

Ty(@ = 11+ [Zy(@)/ Z()]? , (19a)
and a normalized overall gain Tn (@) defined in the form

[y(@ = My@)/Th@]l; N23 (19b)

where Z,(w) is the point impedance of the master structure in reference to the point of
attachment [5,7]. The computer experiments are extended to examine the unnormalized
and normalized overall gain I', y (@) and fl ~ (@), respectively, that some selected sets of
sprung masses may be able to muster. Two normalized test impedances are assigned in

this examination:

11



o/ w) , (20a)

(Zi(@) (o M))} = {1 = (@V3) {(mhey) (@, M)} (200)

where in Eq. (20a) the point impedance Z,(w) is that of the mass M, and in Eq. (20b)
the point impedance Z, (@) is that of an unbounded plate and in that plate m, k, and ¢,
are the mass per unit area, the thickness and the longitudinal speed, respectively [11]. A
case in which the master structure itself is a sprung mass is presented extensively under a

separate cover [13]. Here it is briefly mentioned that this case is accounted for by
(Z, (@ (M)} = (0! 0)[1-(o /o)’ 1+in)], (20c)
where (@;) and (7),) are the resonance frequency and the loss factor of the master sprung

mass, respéctively. [cf. Eq. (1).] In contrast to using Egs. (20a) and (20b), only a

cursory use is made of Eq. (20c) in a subsequent computation and display.
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IL COMPUTATIONS AND DISPLAYS OF NORMALIZED FREQUENCY
BANDWIDTHS AND “ON THE AVERAGE” AND “LOCAL” LOSS FACTORS

The normalized frequency bandwidth (A® / @), as defined in Egs. (5), (6), (13)
and (14a), is computed and displayed as a function of (N), in Fig. 2. In Fig. 2a, the
definition for (y ) in Eq'.'( 13a) is impbsed, with ¥ = 0.2 and 0.4 and 0.6, and
n=0.01, 0.02, and 0.03, respectively. In Fig. 2b the definition for (¥ ) in
Eq. (13b) is imposed, with ¥, =1 = 0.01, 0.02 and 0.03. The increased and
subsequent saturation of the normalized frequency bandwidth (A@ / @) with increase in
the number (N — 1) of sprung masses in the set, is clearly discernible in Fig. 2a. These
characteristics in (A® / @), as a function of (NN), are in close agreement with those
suggested by Eqgs. (5) and (16a). In contrast, the steady increase, without saturation, of
the normalized frequency bandwidth (A / @) with increase in the number (N — 1) of
sprung masses in the set, is clearly discernible in Fig. 2b. These characteristics in
(A / ) are in close agreement with those suggested by Egs. (5) and (16b).

The on the average loss factor (7,,), as defined in Egs. (9a) and (14b), is
computed and displayed as a function of (N), in Fig. 3. In Fig. 3a, the definition for
(7 ) in Eq. (13a) is imposed, with ¥ = 0.2, 0.4 and 0.6 and with 7 = 0.01, 0.02
and 0.03, respectively, and in Fig. 3b the definition for (¥,,) in Eq. (13b) is imposed,
with ¥ =1 =0.01, 0.02 and 0.03. In Fig. 3, the overlap factor (b) is selected to be
(3/2). [cf. Egs. (9) and (10).] It is observed that data in Figs. 3a and 3b of the on the
average loss factor (7, are in close agreement with those suggested by Egs. (92) and
(17a) and by Egs. (9a) and (17b), respectively. The local loss factor (n Nj ), as defined in
Egs. (9b) and (14c), is computed and displayed as a function of (j), with ¥ = 0.4 and
1N =0.02, for N=6, 11, and 18 in Fig. 4a and with ¥, =11 =0.02, for N =6, 11
and 18, in Fig. 4b. Again, in Fig. 4 the overlap factor (b) is selected to be (3'/ 2). [cf.

13



Eqgs. (9) and (10).] The data in Figs. 4a and 4b show close agreement with those
predicted in Egs. (182) and (18b), respectively. The verifications of these agreements are
facilitated by examining Figs. 3 and 5. In Fig. 5, the factor (@ j /o, )2 is displayed, as a
function of (j), for N=6, 11 and 18. In Fig. 5a, (¥,) is as defined in Eq. (13a) and
in Fig. 5b, (¥, ) is as defined in Eq. (13b). The weak, but definite, dependence of

(o j /o, )2 on (j) and (N) exhibited in both these figures, is clearly recognized. [cf.
Eq. (12).]

The numerical increments (¥) and (7, ) are selected in Figs. 2-5 to cause the dual
distributions of the resonance frequencies to degenerate when N =11= N . Indeed, in
Figs. 2-5, the values of two corresponding parameters, each pertaining to the one of the
two distributions, are identical for N =11; e.g., the curve for N =11 in Fig. 5a is

identical to the curve for N =11 in Fig. 5b.

14



III.  NATURE OF THE IMPEDANCE OF A SET OF SPRUNG MASSES

The impedance Z j((o) of the (j)th sprung mass is stated in Eq. (1). The joint
impedance Z, (@) of a set of sprung masses is stated, in terms of the impedances of the
individual sprung masses, in Eq. (4). Utilizing Egs. (9) - (15) to define the quantities
and parameters of the set, the normalized joint impedance Z y(@/ @) of that set is

derived in the form

N
Zy(/o)=io!o)al(N-D]D A+ing){d+iny)
j=2

~(@/@) [1+{2G-1) - Nyl
Zy(o/o)=[Z (@) (o,M,)] Q1)

where (@, M) is a normalizing resistance-controlled impedance. Equation (21) may be
approximated by replacing the local loss factor with the on the average loss factor;

TNnj = T as defined in Eq. (92). The computations of Zy(w/ @,), for a set of
sprung masses, requires the specifications of: (I) the number (N), indicating that there
are (N —1) sprung masses in the set, (I) the mass ratio (a), (III) the duality of the
numerical increment (¥ ) and (IV) the corresponding loss factors (77, ) and (7 Nj ). The
natures of the loss factors (77y) and (17 nj ) have just been investigated in the preceding
section. [cf. Eq. (9) and Figs. 3 and 4.] The displays of the computations of the
normalized joint impedance Z, (@ / @,) are presented in terms of Re {Z v(o/w)},
Im {Zy(w/®,)}and | Z N (@ /@) |, as functions of the normalized frequency

(@ / ®@,). These three normalized quantities for a set composed of a single sprung mass

are depicted in Figs. 6a, 6b and 6c, respectively. Each sub-figure features three curves

15



pertaining to three values of the overlap factor (b); the light curves are for b = (1/3), the
darker curves are for b = (2 /3) and the darkest curves are for b = (3/2). [cf. Eq.
(10).] In the annals of a responding single sprung mass, Fig. 6 is self explanatory and
needs no special commentary. Figure 6 is repeated for a set composed of ten sprung
masses; i.e., N =11, in Figs. 7 and 8. The numerical increments (y) and (y,) are
selected to be 0.4 and 0.02, respectively, so that N, =11, where N, is defined in

Eq. (13c). Therefore, Figs. 7 and 8 simultaneously pertain to both distributions of the
resonance frequencies. In Fig. 7, the on the average loss factors, as depicted in Fig. 3,
are appropriately used. In Fig. 8, the local loss factors, as depicted in Fig. 4, are also
appropriately used. Again, in each figure; e.g., in Fig. 7, the three quantities are presented
as functions of the normalized frequency (@ /@,); e.g., Figs. 7a, 7b and 7c depict

Re {Z\y(w/®,)}, Im {ZN(w /@,)} and | ZN(w/w,) |, respectively, as functions of
the normalized frequency (@ / @,). [cf. Fig. 6a, 6b and 6c, respectively.] Finally, each
sub-figure; e.g., Fig. 7a, features three curves pertaining to three values of the overlap
factor (b); as in Fig. 6, the light curves are for b = (1/3), the darker curves are for

b = (2/3) and the darkest curves are for &= (3/2). [cf. Eq. (10).] Under careful
scrutiny it is observed that Fig. 7, which employs the on the average loss factor, yields
the less symmetric (uniform) undulations and, naturally, Fig. 8, which employs the local
loss factor, yields undulations that are fairly symmetric (uniform). (The symmetry is about
the center frequency (@, ).) It is noted, however, that in the range displayed in these
figures, the difference between the two forms of loss factors; the on the average and
locally based loss factors, is at best a factor of two. From a noise control view a design
that calls for the control of loss factors to better than a factor of two (2) is impractical. In
that sense then, the comparison for differences between Figs. 7 and 8 is merely of an
academic interest [5]. In this connection, the undulated values, in the normalized joint
impedance, converge onto a common curve, as the undulations are suppressed by the

increase in the loss factors via an increase in the overlap factor (b). The convergence is
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just complete as the overlap factor () reaches the neutral value of (3/2). For values of
(b) that are less than (3/2), i.e., when (b) < (3/2), it emerges in these figures, that the
common curve is substantially coincident with all the mean-values curves of the
undulations. This convergence then defines the manner by which the undulations can be
meaningfully averaged [12]. [cf. Appendix A.]

A gross variation on the theme may now be introduced and the influence that this
variation may have on the absolute values of the normalized joint impedance
| Zy(@/ ) is invesfigated. The investigation is conducted in terms of Fig. 9. This
figure repeat Fig. 8c except that the overlap factor (b) is changed from the three standard
values of (1/3), (2/3) and (3/2) to the four values of (3/2), (2), (4) and (8),
respectively. The erosion of the level \Z N (d) / @,) | when the overlap condition is overly
satisfied is clearly discernible in Fig. 9. Indeed, in the light of Fig. 9, one may deduce
that the darkest curves in Figs. 7 and 8, which pertain to an overlap factor (b) = (3/2),
already bear tinges of erosion and hence the marginal deviations of these curves from
strictly mean-value curves [12]. The erosion is initially most pronounced at the edges of
the frequency band. [cf. Appendix A for more details.]

Finally, in Fig. 10, the absolute values of the normalized joint impedance, i.e., the
values of | Z nv(@/ @)1, are presented as a function of (@ / @, ) for a number of (N)’s;
N=1, 3,4, 6, 8, 11, 14 and 18, and for an overlap factor of (b) equal to (3/2). In
Fig. 10a (y ) takes the definition in Eq. (13a) and in Fig. 10b (¥ ) takes the definition
in Eq. (13b). Again, (¥) and (¥, ) are selected as 0.4 and 0.02, respectively, so that
(N,) as defined in Eq. (13c) is eleven (11). The increase of the frequency bandwidths
and the accompanied increase in the mean-levels of | Z v (@ / @) | within these frequency
bands, as (V) is initially increased, and then the saturation of both, with further increases
in (N), is clearly exhibited in Fig. 10a. On the other hand, the continuous broadening of
the frequency bandwidths and the accompanied diminishing in the mean-levels of

| Zy (@/ @,) | within these frequency bands, as (V) increases, emerges loud and clear in
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Fig. 10b. Nonetheless, in spite of this fundamental difference in behavior, the curve in
Fig. 10a for N =11 = N, and the corresponding curve in Fig. 10b are identical as

dictated by Eq. (13c).
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IV.  OVERALL GAIN OF A SET OF SPRUNG MASSES ATTACHED TO A
MASTER STRUCTURE

The overall gain I';y (@) and the normalized overall gain T, n (@) for a set of

sprung masses are stated in Eq. (19). Utilizing Eqgs. (20) and (21) the overall gain may be

stated in the form.

Tw@/o) = |[1+Zy@/ o)/ Z@/o)I]' ; N23 , (22

and the corresponding normalized overall gain may be stated in the form
Tv(@/w) = [My(@/ o)/ Tye/w)] ; N23 , (22b)

where the normalized point impedance Z; (@ / @, ) in the master structure may be cast in

the form
i(w/ “’1) - (23a)
Z(w/w) = , 1 , (23b)
(/o)1 - (o, /0> +in)] | . (23¢)

It is recognized that an overall gain I'| y (@ / @,) that is unity is gainless, less than unity is
ineffective and greater than unity is effective, gaining a beneficial noise reduction. Clearly,
given an adequate frequency bandwidth, the more the overall gain exceeds unity in that
frequency band the better is the insi'tu performance of the referenced ﬁoise control device.

On the other hand, a normalized overall gain Ty (@ / @,) that is unity is neutral, less than

unity is deficient and greater than unity is efficient. In an efficient region, a set of multiple
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sprung masses performs more effectively than a corresponding single sprung mass.
Indeed, the employment of a multiplicity of sprung masses is an attempt to widen the
frequency bandwidth and sustain, on balance, an efficient normalized overall gain within
that wider frequency band. The normalized overall gain T, (@ / @,) furnishes
information with regard to this balance. Figures 11a and 11b and Figs. 12a and 12b depict
the overall gain, as a function of (@ / @, ), derived by converting data presented in

Fig. 10a and Fig. 10b, ala’ Eq. (22a), under the guidance of Egs. (23a) and (23b),
respectively. Similarly, Figs. 11d and 11e and Figs. 12c and 12d depict the normalized
overall gain as a function of (@ / ,) derived by converting data presented in Fig. 10a and
Fig. 10b, ala’ Eq. (22b), under the guidance of Egs. (23a) and (23b), respectively. The
identical darkest curves, in Figs. 11a and 12a and in Figs. 11b and 12b pertain to a set
consisting of a single sprung mass that is attached to a point on a master structure. The test
impedances at this attachment point are as stated in Eqé. (23a) and (23b), respectively.
These identical darkest curves in Figs. 11a and 12a exhibit a narrow ridge in the overall
gain. That ridge peaks at (@/®,) =1 and is accompanied by a nadir at a slightly higher
frequency. At the peak the overall gain is effective; at the nadir it is ineffective.
Analogously, in Figs. 11b and 12b, the ridge, in the identical darkest curves, is also
narrow and it peaks at (@ /@, ) = 1. However, at and in the vicinity of (®w/®,) =1, the
peak stands alone. At the peak the overall gain is effective; outside the narrow band, which
is centered on the peak, the overall gain bottoms on unity. Thus, for a set consisting of a
single sprung mass, Figs. 11 and 12 readily exhibit an effective overall gain. However,
this effectiveness is confined to a narrow frequency band. Indeed, the narrowness of the
frequency band in which the effective overall gain lies; i.e., the darkest curves in Figs. 11
and 12, is the reason for proposing a device incorporating a set composed of a multiplicity
of sprung masses [1-5]. A query arises in this connection: Is sﬁch a proposal viable in the
sense that an extended bandwidth can be attained with an overall gain that is effective in that

wider frequency band? To prepare the answer to this question, the data presented in
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Figs. 11 and 12 are more extensively studied. With an increase in (N), Fig 11a exhibits
a broadening of the frequency bandwidths, a shift in the peaks to lower frequencies and an
enhancement in the effectiveness. It is also observed that as (N) increases, the
ineffectiveness in the overall gain become more severe and the nadirs are shifted to higher

~ frequencies. However, the broadening of the bandwidths, the frequency shifts of the
peaks aﬁd the nadirs, and the enhancement in the effectiveness and the ineffectiveness all
saturate in Fig. 11a with a further increase in (N). This saturation renders the changes
with the increase in (N) largely insignificant once (V) exceeds the critical number (V).
Adding complications, such as an increase in the number of sprung masses, without
definitive benefits is not a good design procedure. Similarly, with increases in (N),

Fig. 12a exhibits a continuous broadening of the frequency bandwidths, a shift in the
frequencies of the peaks and the nadirs and a reduction in the effectiveness and the
ineffectiveness. The continuity of these changes with increases in (N) cannot be
beneficially maintained beyond the critical number (N ); when (N) increases beyond
(N.), the reduced effectiveness in the overall gain is rendered unacceptable. In summary,
the overall gain presented in Figs. 11a and 12a for (N, 2 N 2 3) cannot be considered a
major improvement over that for a set of a single sprung mass for which N = 2. Thus,
although ostensibly the absolute values of the normalized joint impedance, as displayed in
Figs. 10a and 10b, hold a promise for an effective overall gain, that promise is largely
evaporated in Figs. 11a and 12a. The normalized test impedance that is assigned to

Figs. 11a and 12a is that stated in Eq. (23a); namely, Z,(@/®,) = i(®/®,). Onthe
other hand, Figs. 11b and 12b show that, as (N) increases, the frequency bandwidths
become wider and remain centered about (@ / ®,) = 1. These figures also show that the
overall gain levels bottom on unity and, therefore, the overall gain is never ineffeciive. The
saturation of the frequency bandwidth and levels in Fig. 11b, again defines a critical
number (N_); a larger number of sprung masses than (N, — 1) contributes little to the

overall gain in both, frequency bandwidth and level. It appears, from Fig. 11b, that the
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saturated frequency bandwidth and the saturated level in that frequency band relate
inversely to each other. This statement is supported and is vividly illustrated in Fig. 1 lc.
In this figure the value of the numerical increment () is set equal to 0.2, while in

Fig. 11b it is equal to the standard value of 0.4. In Fig. 11c, as compared with

Fig. 11b, a reduction in the saturated frequency bandwidth is traded for an increase in the
saturated level.

In Fig. 12b, one finds that the continuous broadening of the frequency bandwidths
is accompanied by a reduction in the levels of the overall gain in that frequency band.
Again, this inverse relationship between a frequency bandwidth and a corresponding level
defines the critical number (N.). When (N) increases beyond (N_), the resulting
reduction in level (effectiveness) renders the level unacceptable. Moreover, since (¥,), in
Fig. 12b is retained at the standard value of 0.02, and the standard value of 0.4 for (y)
is halved to 0.2 in Fig. 11c, Eq. (13c) dictates that the corresponding curves, in these
two figures, for N =6=N o are identical.

In summary, and in contrast to Figs. 11a and 12a, the overall gain presented in
Figs. 11b and 12b for (N, 2 N 2 3) indicates an improvement over the overall gain
pertaining to a set of a single sprung mass for which (N = 2). In these figures, the latter
is depicted by the darkest curves. Thus, the promise that may be held by the absolute
values of the normalized joint impedance, as presented in Figs. 10a and 10b, materializes,
in part, in Figs. 11b and 12b. In these figures, the normalized test impedance Z (@ /®,)
on the master structure is as stated in Eq. (23b); namely, Z (w/w)=1.

How crucial is the role of Z,(® / @,) in the determination of the noise control
benefits that can be accrued from a device incorporating a multiplicity of sprung masses?
In part, the answer to this question has already been advanced; the noise control benefits
accrued in Figs. 11b and 12b are superior to those in Figs. 11a and 12a. To enrich the
answer, yet two more figures, Fig. 13a and 13b, are displayed. These figures use data

presented in Fig. 10b together with the normalized test impedance stated in Eq. (23¢) to
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compute the overall gain I', y (@ / @,) as a function of the normalized frequency
(o/ ;). InFig. 13a the loss factor (7,) is set equal to10™! and in Fig. 13bto 1072,
Figures 13a and 13b exhibit more extreme regions of effectiveness and ineffectiveness
than the corresponding regions in Fig. 12b. Moreover, the regions in Fig. 13b are more
extreme than in Fig. 13a. Therefore, the loss factor (7);) of the master sprung mass, as
well as the fact that the master structure is a sprung mass, significantly influences the levels
of these extremes.

It is advantageous, at this stage, to solicit the information that may lie in Figs. 11d
and 11e and Figs. 12c and 12d; these figures display the normalized overall gain
T y(@/ @,) as a function of the normalized frequency (@ / @,). The information in
these figures may be judged in the light of Figs. 11a and 11b and Figs. 12a and 12b,
respectively. The effectiveness and the ineffectiveness in Fig. 11a turns, understandably,
into a deficiency and an efficiency in Fig. 11d. Moreover, from Fig. 11d, it is apparent
that the gain in efficiency over a wider frequency band hardly materialized. Similarly, the
high effectiveness of the single sprung mass in Fig. 11b is manifested as a deep deficiency
in Fig. 11e. Further, from Fig. 11e, it is observed that the gain in efficiency over a wider
frequency band barely materialized. From Figs. 12a and 12c and Figs. 12b and 12d, it is
concluded that with respect to the gain in efficiency over a wider frequency band, these
pairs of figures do not fare much better than do Figs. 11a and 11d and Figs. 11b and 11e,
respectively. The situation is improved in Figs. 13a and 13c and Figs. 13b and 13d.
Figures 13c and 13d display the normalized overall gain T (@ / @) that correspond to
the overall gain I'| y (@ / @,) that is displayed in Figs. 13a and 13b, respectively. From
Figs. 13a and 13c and Figs. 13b and 13d, it is concluded that, with respect to the gain in
efficiency over a wider frequency band, these pairs of figures fare a little better than do
Figs. 12b and 12d. Which pairs of figures; either Figs. 13a and 13c or Figs. 13b and
13d, describe a more viable noise control device is a design problem that needs to be

tackled by more expanded consideration; e.g., how much of a deficiency can be tolerated at
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and in the vicinity of (@ /®;) =1 and yet satisfy a viable noise control goal? In addition,
were a noise control goal to be proposed, how significant to this proposal are the
efficiencies on either side of the immediate frequency region defined by (@ /w,) = 1?
Moreover, the deficiencies and efficiencies in Figs. 13c and 13d exceed the corresponding
ones in Fig. 12d. How significant to the proposal are such variations in efficiencies?
Using Egs. 11-13, the answers to these kind of questions are largely inconclusive, if not
confusing. In spite of these observations, one can, nonetheless and with caution, develop
a few criteria to assist with the design of a viable noise control device prior to the
specifications of its insitu attachment. These criteria in the design process merely constitute
necessary conditions. Often necessary conditions are a mouthful, and thus, the remaining
part of this report is devoted to the development of such criteria. The sufficiency of these
conditions need await the specifications of the test impedance of the master structure, which
in the coming development is merely neglected. One need not, however, ignore that in the
final analysis the insitu performance of the device is all that really counts and, for this

purpose, a knowledge of this test impedance is an essential ingredient in the final design.

[5]
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V. CRITERIA OF PROMISE FOR A NOISE CONTROL DEVICE
INCORPORATING A SET OF SPRUNG MASSES

The noise control viability of a device composed of a single sprung mass may be

assessed in terms of its normalized impedance 72 (1) at resonance and its normalized

bandwidth (A®@ / @),. Both of these quantities are readily stated in the form
Z,(1) = (albn) ; (Aw/w), = (bm) (24)

where (1) and (b) are defined in Eqgs. (9) and (10). A criterion of viability for this

device may be stated in the form
Z,1) > 1 ; (bn) << (@) . (25)

The device, as discussed earlier, suffers from a lack of adequate frequency bandwidth.

That sufferance may be accounted for by defining a parameter of promisé C,(b) defined

by the product of the normalized impedance at resonance and the corresponding frequency

Bandwidth [5] From Egs. (24) and (25) one obtains

If a device incorporating a multiplicity of sprung masses is designed with the intention of
deriving a wider frequency band, using Egs. (6) and (16) that intention can be qualified in

the form
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A criterion of viability for this device is cast in terms of the average normalized leve! of

the joint impedance (I ZC (w/w) I), where the angular brackets indicate mean-value

averaging over the frequency band defined in Eq. (27). The criterion demands that this

quantity exceeds unity in that frequency bandwidth; namely

(Zy@/opl) 2 1 ; N23 (282)

for only under this condition can one necessarily ensure the potential viability of the overall
gain for this device. Following the suggestion made in Eq. (24), one obtains from

Eqgs. (9), (18) and (21) that

N
Zy() = ila(N -1y, 1Y, ((b)w; /0)* + (N+2-2))}" ;
j=2

N23 , (29a)

which can be further approximated in the form

Zy() = [a/(N-DyylAy(b) ; N23 , (29b)
where
N
Ay(d)=Y i)+ (N+2-2)}" ; N=23 . (30a)
Jj=2

The quantity Ay (b) is real and, provided the overlap factor (b) is about (3/2), it is of

the order of unity. [cf. Appendix A.] This statement, with regards to Ay (b), is illustrated
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in Fig. 14a; in this figure Ay (b) is displayed as a function of (N) for (b) = (1/3),
(2/3), (3/2) and (4). The undulations in Ay (b) when (b) is less than (3/2) is
obvious in Fig. 14a. The undulations are between the maxim at resonance for the even
(N)’s and the minima at anti-resonance for the odd (/N)’s when the overlap condition is
not met. When this condition is met, i.e., when (b) exceeds (3/2), the undulations, as
usual, are suppressed. The erosion that sets into Ay (b) when the conditions of médal
overlap is overly satisfied; (b) > (3/2), is clearly discernible in Fig. 14a. [cf. Fig. 9.]
To satisfy a mean-value averaging for the criterion of viability, stated in Eq. (28a), one

introduces an undulation-free construct into Eq. (29b) in the form

(1Zy@/w))) = [al(N-DyylAy() 21 ; N23 , (28b)

where
Av(b) = [Ay(B)Ay, (D12 . (30b)

The quantity Ay (b) is real and is free of undulations in the sense that it is geometrically
averaged to determine a mean-value for (l Zy(w/ ) l) [12]. The quantity Ay (b) asa
function of (V) for (b) =(1/3), (2/3), (3/2) and (4) is presented in Fig 14b.
Figures 14a and 14b indicate that both Ay (b) and Ay (b) are functions of both (N) and
(b). Also indicated is the convergence of both functions onto an asymptotic value of

(7 /2) as (N) increases; the convergence is more rapid in (V) the smaller is the overlap
factor (b). [cf. Appendix A.] The convergence of Ay (b) is undulated; naturally the
stroke of the undulations is larger the smaller is (b). On the other hand, the convergence
of A ~ (b) is undulation-free by construction. [cf. Eq. (30b).] The erosion is a manifest
that the range of (N) in Figs. 14a and 14b is insufficient for Ay (b) and Ay(b)to

converge onto (7 /2) when (b) exceeds (3/2) and beyond. [cf. Appendix A.]
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Again, one may define and evaluate, from Eqgs. (27) and (28b), a parameter of

promise Cy(b) in terms of the product of the average joint impedance (I Zy(w/ wy) l)

and the bandwidth (A®w /@) >3 ;namely

Cv®) =(Zy(@/0) ) A0/ ®)ys3 = [al(N-DI(N-2)Ay(b);N23 ,
(3

which is independent of (Y y) and, therefore, of the distribution of the resonance
frequencies. A criterion of promise C v (b) may then be defined as the ratio of the
parameter of promise Cy (b) of a noise control device incorporating (N — 1) sprung
masses to the parameter of promise C,(b) of a noise control device incorporating but a

single sprung mass [5]. From Egs. (26) and (31) the criterion of promise is derived

Cy(b) = [Cy(B)I Cy(b)] = (N-1)"(N=2)Ay(b) ; N23 .(32)

The larger C n (b), the more the promise that the device may potentially hold. [A similar
quantity, defined as the “gain bandwidth product,” was presented in Reference 5. In this
reference a minor variation on the second distribution of resonance frequencies was
employed.] The criterion of promise C\(b) is computed as a function of (N) for

(b) =(1/3), (2/3), (3/2) and (4); the results of these computations are displayed in
Fig. 14c. Itis noted that the undulations that beset Fig. 14a are suppressed, as intended,
in Fig. 14c. Moreover, the erosion that sets in when the conditions of modal overlap is
overly satisfied; i.e., when (b) exceeds (3/2), is clearly exhibited in Fig. 14c [cf.
Figs. 9a, 9b and 13a.] Figure 14c shows that C, v (b) saturates; this saturation defines a
critical number (N ) for (N). Most of the promised benefits are accrued for a device
incorporating (N, — 1) sprung masses; a demand for a larger number of sprung masses

becomes an excessive design sophistication. Finally, as discussed earlier, the insitu
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viability of the devices can be ascertained only in terms of the overall gain I' y (@ / @,),
stated in Eq. (22). The criterion of viability, as stated in Eq. (28), and the criterion of
promise, as stated in Eq. (32), are merely necessary conditions; they are, by no means,
sufficient conditions to ensure the viability of the overall gain of a noise control device
incorporating a multiplicity of sprung masses. The viability of the overall gain is crucially
dependent on the normalized point impedance that the noise control device perceives in the
host structure--the master structure--to which it is attached. Moreover, to ascertain the
viability of the noise control device, the characteristics of the device need to be described in
a manner that facilitates the assessment of the true achievement that can be mustered by the
device, e.g., the complex values of the joint impedance perceived by the master structure as

compared with the absolute values of this quantity [S].
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APPENDIX A

A dynamic quantity (or a measure); e.g., either Zy (@ / @,) or Ay(b), is
formulated with the intention of describing the characteristics in the dynamic behavior of a
set of sprung masses. These characteristic are revealed by appropriately expressing and
displaying these quantities; e.g., Z, v(@/ @) is depicted as a function of (@/®,) and
Ay (b) is depicted as a function of (N). Often the characteristics of one quantity are
related to the characteristics of another. Indeed, Ay (b) is a factorin Z (@ / ;) when
the latter is evaluated at (@ / ;) = 1. [cf. Eq. (29).] Itis not surprising then that
undulations are clearly discernible in the displays of both these quantities when the overlap
factor (b) is less than (3/2). Moreover, the excursions in the undulations in both
quantities are more prominent the smaller this factor is. Again, in both quantities the
undulations are suppressed into steadily monotonic values when the overlap factor (b)
exceeds (3/2). The undulations in both quantities can be suppressed by special
constructs so than even when [b < (3/2)] the constructed quantities exhibit values that are
steadily monotonic. In this vein, a proper construct is one for which the steadily
monotonic values largely coincide with the mean-values of the undulations in the original
quantity and the undulation-free values in the original quantity substantially coincide with
those in the construct [12]). Thus, the constructed quantity ZN(b), stated in Eq. (30b) and
displayed in Fig. 14b, is a proper construct of the original quantity Ay (b), stated in
Eq. (30a) and displayed in Fig. 14a. Briefly stated, Ay (b) is a proper mean-values
counterpart of Ay(b). A question arises: are all mean-values the same; i.e., is Ay (b)
independent of (b)? The answer to this question is of particular interest to this Appendix.
In part, the answer to this question is cavalierly given in the text. In the range of moderate
parametric values, the figures in the text indicate that although for large overlap factors

[ > (3/2)] the values of Ay(b) and Ay (b) are the same, the values are eroded in the
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sense that these values lie below the mean-values of Ay (b) and the values of Ay (b) that
pertain to the small overlap factors [6 < (3/2)]. The erosion is particularly severe for the
smaller values of (N ) and the larger values of (b). On the other hand, for small, but
different, overlap factors [5<(3/2)], the mean-values of the undulations in Ay (b), as
well as the corresponding values of the undulation-free construct Ay (b), are closer to each
6ther and this closeness is the cozier the larger the values of (N) are. The quantification of
these observations is also of particular interest to this Appendix.

It is conducive at this stage to select an alternative implementation of Ay (b) to that

stated in Eq. (30b). In this alternative implementation one defines

N }
Anstrn®)=G12) D 1) +(N+1=2))" + {(b)+ (N +3-2/)}" ]
j=2

N
=D (g ; ey D) +{B)+(N+1-2/)}" ; N23 , (A1)
j=i

where

/72y ; r=j
r.j = { (AZ)

1 s r#j

The function A(y+,,)(b) is computed and displayed as a function of (N), for

- (b)=(1173), (2/3), (3/2) and (4), in Fig. Al. The similarity between Ay(b), shown

in Fig. 14a, and A (b), shown in Fig. Al, is striking; they are substantially the

(N%1/2)
same except for a displacement of unity with respect to (N). [cf. A(y4qy(b) in
Eq. (30a), which is also displaced from Ay () by unity with respect to (N).] The

function 4y 1,,2)(b) may be employed to define Ay (b) in the alternative form
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Av(b) = [Ay(B)Aw2 »®N'? 3 N23 - (A3)

where the explicit expression for Ay (b) is stated in Eq. (30a). [cf. Egs. (28) and (29).]
The quantity ZN(b), as stated in Eq. (A3), is depicted as a function of (N) in Fig. A2;
the overlap factor (b) is set in this figure equal to (1/3), (2/3), (3/2) and (4). The
substantial identity of Fig. A2 with Fig. 14b is clearly discernible. To identify and
address the particular interest of the Appendix, it is required to make explicit the
dependency of Ay(b), as stated in Eq. (A3), on the overlap factor (b) and on the
subscript (N). In attempting to ascertain this dependency it is convenient to distinguish
between an (N) that is even and an (N)that is odd. Employing Egs. (302), (A1) and

(A3), one readily manipulates and derives

(N+2)/2
AvBY=[ D, Enszya BB +(N+2-2j))"]"?
j=2
N/2
o (Y T +N+1-2)7)"1"% ad)
j=1

for an (N) that is even, and

(N+1)72

Ab)=[ Y, &, &2 @D +(N+1-2)%)']'?
j=l
(N+1)/2
o [ D, 2+ (N+2-2)Y7")"2, (AS)
j=2
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for an (N) that is odd, where €, j is defined in Eq. (A2). In “long hand”, Egs. (A4) and

(A5) assume the forms
AyB)=[1+261 B>+ + B2 +16) +. . .+ (B +[N-21)'})?
o 2{BE+ DT+ B2 +9)7 +. . L +(1/2) b2 +[1\/—1]2)"‘}]”2 ., (A6)

Ay(B)=[1+202{B* + ) + B2 +16)7 +. . . +1/2)B* +[(N-D1H) )2

e R{B*+DT+ B2+ +. L L+ B +IN=-2H)E ,  (AD

respectively. For a large enough (N), and independently of whether (N) is even or odd,

one may derive from Egs. (A6) and (A7) the asymptotic evaluation

Ay(b)—>(m/2) ; N>>(®bl2) ; N23 . (A8)
The validity of Eq. (A8) is predicated on (b), but once this equation is validated, Ay (b) is
independent of (b) [14]. As (N) satisfies the second of Eq. (A8), the asymptotic
convergence of the curves, in Figs. 14b and A2, is clearly explained by the first of

Eq. (A8). A heuristic expression for ZN(b) that seems to embody Eq. (A8) and that

conforms to the data presented in Figs. 14b and A2, may be cast in the form
Ay(b)=(w/2)exp [-g(N)f(B)] ; N23 , (A9)

where
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g(N) = @N-D[2(N-1DN]™! 2, U/N) (A10a)

N

fby = @707+ (b)) . (A10b)

The conformity of Eq. (A9) to Eqs. (A6) and (A7) is depicted in Fig. A2; the conformity
is sufficiently tight. Equation (A9) is simple enough and yet it serves and satisfies the
purpose for which the Appendix is brought to bear. Some of these bears are discussed in
the introduction to this Appendix. Thus, for example, relying on Eq. (A9) one may assert
that the undulations in Figs. 14a and A1, maintain largely the same mean-values, within

10% range of (7 / 2), provided

gNf(312) <107 5 [gNN' =11=nN, | (Alla)
or within 20% range of (7 / 2) provided

g(N)f(3/2) s 2x107" ; [gNT' =5=nN, , (Al1b)

where the data presented in Fig. A2 is utilized, and (N_.) is the critical number of (N) as
defined and discussed in the text. Other features in Figs. 14a and A1, and in other figures
in the text, can be explained and accounted for using Eq. (A9). In particular, Eq. (A9) is
decisively keyed to deciphering the role played by the mean-values, by the erosions in the
values of measures and by the critical number N, of noise control devices that are
designed to exhibit high criterion of viability and criterion of promise. [Egs. (31)-
(36)1. |

One may now address the speculation that the mean-values of the undulations and

the values of the undulation-free measures of a set of sprung masses are substantially equal
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and are, therefore, independent of the loss factors. The loss factors of the individual
sprung masses are here determined by the distributions of the resonance frequencies and
the overlap factor (b). [cf. Eqgs. (9) and (10).] This statement of independence is found to
be only obliquely valid. The validity of this statement holds without qualification only if

the number (N — 1) of sprung masses in the set approaches infinity so that
gNf(b) << 107" ; N>>3 | (Al12a)

where g(N) and f(b) are stated in Eq. (A10). The statement is only partially valid, to
within 10% if

gN)f(b) 107, N23 . (A12b)

[cf. Eq. (A11).] When the condition stated in Eq. (A12b) is violated, erosion, in the
mean-values, when relevant, and in the values of the measures, progressively sets in. The

erosion sets in when
g(N)f(b) 2107 ; N23 (A12¢)

and is the more severe the more the inequality stated in Eq. (A12c) is. Appreciable erosion
weakens both the criterion of viability and the criterion of promise and this is the reason
that designers deem the overly damped sprung masses; e.g., when (b) = (8), to be
detrimental to the performance of the device incorpofating them. On the other hand, the
detrimental influence of the undulations on the performance of the device is obvious.
Therefore, an overlap factor (b) of (3/2) is a design goal that will ensure against

undulations on the one hand, and erosion on the other.
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Fig. 1. A sketch of a set of sprung masses acting at a point.
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Fig. 2a.  The frequency bandwidth (A@ /@) as a function of (N); 2 < N <18. [cf. Eq.
y=04,1n=0.02; y=0.6,

(N)

Fig.2b.  The frequency bandwidth (A®@ / ) as a function of (N); 2 < N < 18.
[cf. Eq. (13b).] — - — - — Yo =1 =0.01;

Yo =N =0.02;
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Fig. 3a.  The on the average loss factor 1, as a function of (N); 2 < N <18. [cf. Egs.

(9a) and (13a).] — - —-— Yy =0.2,n=0.01; Yy =04, n=0.02;
————— y =0.6, n=0.03
10°F - R SRARERTEE LT CE PP L PR P LT SPPRERPREPPPRS '
() : : :
T T .....................................
102 v e ¢ e s el s e i e 2 m e s

Fig. 3b.  The on the average loss factor 1, as a function of (N); 2 < N <18. [cf. Egs.
(92) and (13b).] — - — - — Yo =n=0.01;

Yo =N =0.02;
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a. y=04 ; n=0.02. [cf. Eq. (13a).]

103

b. Yo =N =0.02. [cf. Eq. (13b).]

Fig. 4. The local loss factor (1 Nj) as a function of (). [cf. Eq. (9b).] The overlap

factor (b) is equal to (3/2). [cf. Eq. (10).] - ---- N=6;
N=1;—-—-— N=18.
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a. y=04.[cf Eq.(13a).]
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101
()
b. ¥, =0.02. [cf. Eq. (13b).]

Fig.5.  The normalized quadratic resonance frequency (@ /@, )2, as a function of ( 5.
{cf Eq.(12).) - =--- N=6; N=11;,—-—-—; N=18.
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10_1'.a;.a.;.;.
0.7 0.8 0.9 1.0 1.1 1.2 1.3
(w/o,)
Fig. 6. The normalized quantities relating to the normalized joint impedance z y (@), of

aset of (N — 1) sprung masses as functions of (@ / @,). The set is defined by
N=2,a=10and n= 2x1072. Light curves 1, = 6.7x10_3, darker curves

n, = 1.33x1072 and darkest curves 7}, = 3x1072.
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0.7 0.8 0.9 1.0 1.1 1.2 1.3

(0/o)

Figs. 7.  Normalized joint impedance zZ y{(@/ @) as a function of (w/ w,) of aset of
(N =1) = 10 sprung masses. [cf. Eq. (20).] The set is defined by N = 11, by
a=10,by 7, =1=0.02 and by y = 0.4. [cf. Eq. (13a).] Light curves
b= (1/3), darker curves b= (2/3) and darkest curves b=(3/2). [cf.

Eq. (10).] Employs on the average loss factors. [cf. Eq. (‘9a).]
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-2.00

Fig. 8. Repeats Fig. 7 except that local loss factors are employed. [cf. Eq. (9b).]
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Fig. 9. Repeats Fig. 8c except that the values of the overlap factor (b) are: (3/2)
(darkest curve) 2, 4, and 8 (lightest curve). [cf. Eq. (10).]
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0.7 0.8 0.9 1.0 1.1 1.2 1.3

(/o))
a. ¥=0.4and n=0.02. [cf. Eq. (13a).]

0.7 0.8 0.9 1.0

(/o))

b. ¥, =n=0.02. [cf. Eq. (13b).]

Fig. 10.  The absolute values of the normalized joint impedance | Z (@ / ®,) | as a
function of (@ / @,) for N = 2 (darkest curve), 3, 4, 6, 8,11, 14 and 18

(lightest curve) with the overlap factor b= (3/2). [cf. Eq. (10).]
45




10°

10”
0.7 0.8 0.9 1.0 1.1 1.2 1.3
(0/0,)
a. Computed Iy (@ / ®,) from Fig. 10aand Z, (@ /®,) = i{®/®,). [cf. Eq.
(23a).]
QO o s

P lllllll

e
~
£

10!
0.7 0.8 0.9 1.0 1.1 1.2 1.3

(w/w,)
b. Computed I,y (®@/ ,) from Fig. 10a and Z (@ /®,) = 1 [cf. Eq. (23b).]

Fig. 11.  The overall gain 'y (@ / @, ) and the normalized overall gain Iy (@ / @, ) as

functions of (w/ ®,). [cf. Eq. (22).]
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10 -
0.7 0.8 0.9 1.0 1.1 1.2 1.3

(w/w,)
c. Repeats Fig. 11b except that () is halved, from 0.4 to 0.2. The value of
N, =6. [cf. Eq. (13c).]

Fig. 11. (Cont.)
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0.7 0.8 0.9 1.0 1.1 1.2 1.3

(@/0))

d. Computed I} y(®/ ®,) from Fig. 10a and Z(0/w)=i(w/w).

[cf. Eq. (23a).]
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10°

10

E Ty(o/w,)

0.7 0.8 0.9 1.0 1.1 1.2 1.3

(/o)

e. Computed I:IN(w/wl) from Fig. 10a and Z(a)/a),) =1. [cf. Eq. (23a).]

Fig. 11. (Cont.)
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10°
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100
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10!
0.7 0.8 0.9 1.0
(w/w,)

a. Computed Iy (@ / ®,) from Fig. 10b and Z; (@ / @;) = i(®/ ®,). [cf.
Eq. (23a).]

102 R

10°

T

I

10!
0.7 0.8 0.9 1.0 1.1 1.2 1.3
(w/w,)

b. Computed T,y (@ / ®,) from Fig. 10b and Z,(@/®,) = 1. [cf. Eq. (23b).]
Fig. 12.  The overall gain I,y (@ / @,) and the normalized overall gain Ty (@/ ) as

functions of (@ / ;). [cf. Eq. (22).]
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10°

107
0.7 0.8 0.9 1.0 1.1 1.2 1.3
(w/w,)
c. Computed Ty (@/ @,) from Fig. 10b and Z(0/w) = i(w/w).
[cf. Eq. (23a).]
102 EI_“N((D/(!M)

10"
0.7 0.8 0.9 1.0 1.1 1.2 1.3
d. Computed Ty (®/ ®,) from Fig. 10b and Z; (@ /@) = 1. [(cf. Eq. (23b).]

Fig. 12. (Cont.)
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a. Computed I'y(®w/ @, ) from Fig. 10b and Z,(w/ w,) as specified in

Eq. (23a) and with 1, = 107"

b. Computed I}y (®w/®,) from Fig. 10b and Z (@ / w,) as specified in
Eq. (23c) and with 77, = 1072,
Fig. 13.  The overall gain I}y (@ / ®,) and the normalized overall gain Ty(w/ o) as

functions of (@/ @,). [cf. Eq. (22) and note change of ordinate scales from those

in Figs. 11 and 12.] 51
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c. Computed Iy (e / ®,) from Fig. 10b and Z, (0 / @,) as specified in
Eq. (23c) and with 77, = 107",

102 E_—()

102
0.7 0.8 0.9 1.0 1.1 1.2 1.3

(w/®,)
d. Computed Ty (e / ®,) from Fig. 10b and Z (@ / @,) as specified in

Eq. (23c) and with 1, =107,

Fig. 13. (Cont.)
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'345678910(N;112131415161718

Fig. 14a. The measure Ay (b) as a function of (N). [cf. Eq. (302).] The values of the
overlap factors (b) are: (1/3) (lightest curve), (2/3), (3/2) and (4) (darkest

0.2

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
(N)

Fig. 14b. The undulations-free measure Ay (D) as a function of (N). [cf. Eq. (30b).] the
values of the overlap factor (b) are: (1/3) (lightest curve), (2/3), (3/2) and

4) (darkest curve).
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3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
(N)
Fig. 14c. The criterion of promise fN(b) as a function of (N). [cf. Egs. (31) and (32).]

The values of the overlap factor (b) are: (1/3) (darkest curve), (2/3), (3/2)

and (4) (lightest curve).
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Fig. Al. The measure Z(Nﬂ 12y(b) as a function of (N). [cf. Eq (Al).] The values of the
‘ overlap factor (b) are: (1/3) (lightest curve), (2/3), (3/2) and (4) (darkest

curve)
20— SRR e TR R TR e e e T e s
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(S O )

0.2

3 4 5 6 7 8 9 10(N;112131415161718
Fig. A2. The undulations-free measure Ay (b) as a function of (N). [cf. Eq (A3).] The
values of the overlap factor (b) are: (1/3) (lightest curve), (2/3), (3/2) and

(4) (darkest curve). Superposed is A n (D) as stated in Eqs. (A9) and (A10).

These superposed values of A, N(b)sasre depicted by dashed lines.
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